Comparison of benzene and toluene photodegradation under visible light irradiation by Ba-doped BiFeO3 magnetic nanoparticles with fast sonochemical synthesis.
نویسندگان
چکیده
Bi1-xBaxFeO3 (x = 0.02, 0.04 and 0.07) multiferroic materials with a diameter in the range of 30-40 nm were controllably synthesized by a facile ultrasonic method, with a very short reaction time of 5 min at a low temperature of 30 °C, and the resulting BiFeO3 magnetic nanoparticles (BFO MNPs) exhibited enhanced magnetic and photocatalytic performance. The substitution of Ba2+ ions for Bi3+ ions at the A-site of BFO MNPs, even at only 2%, decreased their particle size and distorted the lattice in the rhombohedral structure of BFO MNPs. Increasing the Ba doping to 7% greatly increased the ferromagnetic properties of BFO MNPs from 3.55 to 6.09 emu g-1. In comparison with pure BFO MNPs, 7% Ba substitution in the Ba-doped BFO MNP samples produced strong absorption in the visible light region, decreasing the band-gap energy from 2.11 to 1.86 eV. Photoluminescence (PL) spectroscopy identified the band-gap emission for BFO MNPs at 587 nm, while for both pure and Ba-doped samples, the other emissions were attributed to the defect states related to oxygen deficiencies inside the band gap. After 50 min of visible light irradiation, Bi1-xBaxFeO3 (x = 7%), with the lowest band gap energy, highest magnetization and smallest particle size, showed almost complete photocatalytic degradation of toluene and benzene (100 mg L-1), with 91 and 81% reduction, respectively, in total organic carbon (TOC). For all irradiation times, the mineralization efficiency of toluene was higher than that of benzene, which demonstrated that toluene is more sensitive to photocatalytic oxidation than is benzene.
منابع مشابه
Hydrothermal synthesis of nitrogen doped graphene supported cobalt ferrite (NG@CoFe2O4) as photocatalyst for the methylene blue dye degradation
A magnetic NG@CoFe2O4 photocatalyst was developed via a facile hydrothermal method and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM) techniques. The CoFe2O4 nanoparticles were found to have a size between 100-150 nm and were unifo...
متن کاملStructural, Magnetic and Photocatalytic Properties of BiFeO3 Nanoparticles
Single phase BiFeO3 (BFO) nanoparticles as a visible light photocatalyst were successfully synthesized by thermal decomposition of the glyoxylate precursor. The glyoxylate precursors were formed by the redox reaction between ethylene glycol and nitrate ions. The phase evolution, structure and optical properties of BFO nanoparticles were characterized by X-ray diffraction, electron microscopy an...
متن کاملSynthesis, characterization and sonophotocatalytic degradation of an azo dye on Europium doped cadmium selenide nanoparticles
In this study, Eu-doped CdSe nanoparticles with variable Eu3+ content were synthesized by a simple sonochemical method. Eu3+ substitution into the structure of CdSe resulted in a material with new physical properties, composition and morphology. The synthesized nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscop...
متن کاملComparison of Photocatalytic Activities of Two Different Dyes Using Pt-Modified TiO2 Nanoparticles under Visible Light
The photocatalytic degradation of Acid Red 91 (AR91) and Acid Yellow 23 (AY23) with different molecular structures and different substitute groups using Pt modified TiO2 (PtTiO2 ) nanoparticles was investigated in the presence of visible light irradiation. Pt-TiO2 nanoparticles were prepared with photodiposition method (PD) and characterized by X-ray diffraction (XRD), scanning electron microgr...
متن کاملPhotocatalytic degradation of methylene blue by 2 wt.% Fe doped TiO2 nanopowder under visible light irradiation
In this paper, 2wt.% Fe doped TiO2 nanopowder was prepared by a combination of sol-gel and mechanical alloying methods. The mechanical alloying of Fe powder with Ti(OH)4 gel produced from the sol-gel method was used to produce Fe doped TiO2 nanopowder. The synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2017